COE CST Second Annual Technical Meeting:

Task 244: AR&D for Space Debris Mitigation

Prof. Steve Rock (PI) Stanford University

Team Members

- Prof. Steve Rock (PI)
- Jose Padial
- Marcus Hammond
- Andrew Smith

The Aerospace Robotics Lab Department of Aero and Astro Stanford University

Motivation and Background

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Statement of Purpose

- Target Reconstruction and Pose Estimation
- Unstructured rendezvous situations
 - Tumbling target motion
 - No a priori information
 - Uncommunicative target
- Enable this capability on a nano-satellite observer
 - Small satellites impose sensing constraints

Target Reconstruction

Target Pose

Monocular Vision Tracking

- Scale Ambiguity
- Sparse Reconstruction

S. Augenstein and S.M. Rock. Improved Frame-to-Frame Pose Tracking during Vision-Only SLAM/SfM with a Tumbling Target. ICRA, 2011.

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Fusion of Vision and Range Data

- Sparse-pattern Range Data
 - Line-scanning Laser
 - Low-resolution Flash LIDAR

- Range data incapable of providing frame-to-frame correspondence
- Visual feature tracking (SIFT) used for frame-to-frame correspondence

Fusion of Vision and Range Data

- Monocular vision enables target reconstruction and pose estimation, but scale factor is unknown
- Scanning range data enables scale factor determination, but is subject to data smearing
- Challenge: alignment of disparate and sparse point clouds

Algorithm Details

2D Vision Feature Measurements $y_i^{t} = [u_i, v_i]_t^{t}$

Expected Vision Measurements

 $\hat{y}_{j}^{[i]} = K(\Xi_{t}^{[i]} \mu_{j}^{[i]} + \bar{x}_{p,t}^{[i]})$

Particle Weighting

$$w^{[i]} = \prod_{j=1}^{N} rac{1}{|2\pi \Sigma_{j}^{[i]}|^{0.5}} e^{-rac{1}{2}||y_{j}^{t} - \hat{y}_{j}^{t}|^{[i]}||^{2}_{\Sigma_{j}^{[i]}}}$$

Details of the algorithm in:

J.Padial, M.Hammond, S.Augentstein, and S.M.Rock, "Tumbling Target Reconstruction and Pose Estimation through Fusion of Monocular Vision and Sparse-Pattern Range Data", *IEEE International Conference on Multisensor Fusion and Information Integration (MFI)*: IEEE Press, 2012.

And/or discuss with Jose by poster!

Vision-range Correspondence

$$\begin{aligned} \hat{c}_t &= \underset{c_t}{\arg\min} \quad ||P_I(\bar{m}_{c_t}) - P_I(\bar{z}_t)|| \\ \text{subject to} \quad ||P_I(\bar{m}_{c_t}) - P_I(\bar{z}_t)|| \leq \beta \end{aligned}$$

Scale Estimation System is *Linear*

$$\bar{z}_t = (R(\bar{\theta}_t)^{B/C} \bar{x}_{p,t} + \bar{m}_{\hat{c}_t}) \alpha_t + \bar{\delta}_z \\ \bar{\delta}_z \sim \mathcal{N}(0, \Gamma_{z_t})$$

Gaussian Measurement Distribution is Linear in Scale

 $p(z_t|lpha_t, x^t, z^{t-1}, c^t) \sim \mathcal{N}(z_t; (R(ar{ heta}_t)^{B/C} ar{x}_{p,t} + ar{m}_{\hat{c}_t}) lpha_t, \ \Gamma_{z_t} + lpha_t^2 \Sigma_{\hat{c}_t})$

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Simulation Environment

- Target and observer (point-mass)
- Relative motion profile simulated
- Pixel measurement noise
 - sampled from zero-mean
 Gaussian with 1-pixel variances
- Range measurement noise
 - sampled from a zero-mean Gaussian with standard deviation 1% true DT

Simulation Results

Estimate Error	Mean	Std. Deviation	Мах
Scale	2.14%	0.86%	4.36%
Angular Velocity	3.62%	0.71%	5.77%

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Simulation Results

Run A: 0.42% scale error, 3.42% angular velocity error

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Simulation Results - Angular Rate Tracking

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Hardware Test Platform

 Simulink-based manipulator and tumbling base control with synchronized camera/ranging data collection and IR truth data collection

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Hardware Test Platform

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Hardware Data Collected

10 sample images and laser range finder scans from dataset collected with ARL hardware test platform.

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Federal Aviation 16

Moving Forward

In Progress:

- Initial hardware experimental data generated
- Dealing with truth data synchronization issues
- Dealing with algorithmic bugs in processing data

Priorities Moving Forward:

- Complete testing in ground-based hardware simulator
- Extend simulation studies and algorithmic analysis
 - Varying target geometries
 - Varying relative motion trajectories
- Modify algorithms to enable deployment on flight hardware (e.g. small sats)

TASK 244: AUTONOMOUS RENDEZVOUS AND DOCKING (FOR SPACE DEBRIS MITIGATION - TARGET POSE & SHAPE SENSING)

PROJECT AT-A-GLANCE

- AST RDAB POC: Nick Demidovich
- AST RESEARCH AREA: 2.3 Vehicle Safety Systems & Technologies
- UNIVERSITY: Stanford University
- PRINCIPAL INVESTIGATOR: Dr. Steve Rock
- STUDENT RESEARCHER: Jose Padial (PhD), Marcus Hammond (PhD), Andrew Smith (PhD)
- PERIOD OF PERF: Jan 1, 2011 May 2013
- STATUS: Ongoing

RELEVANCE TO COMMERCIAL SPACE INDUSTRY

• Safe approach and successful capture of uncooperative space debris will require the ability to autonomously identify the object of interest and its motion vectors.

STATEMENT OF WORK

- Develop and demonstrate robust autonomous rendezvous and docking (AR&D) sensing technology for
 - Targets undergoing complex, potentially tumbling motion
 - Damaged and/or uncommunicative spacecraft
 - Orbital debris.
- Develop new technology to enable safe, autonomous rendezvous and docking with disabled spacecraft or capture of debris

Improved 6DOF ground-based hardware experiment

<u>STATUS</u>

- Camera-LIDAR simulation environment completed
- Fused vision-LIDAR algorithm validated in simulation
- Validation in ground-based experiment

FUTURE WORK

- Complete validation of fused algorithm in ground-based experiemnt
- Modify /extend algorithms for small-sat compatible processors
- · Identify and prepare for flight experiment

Contact Information

- Prof. Steve Rock (PI)
- Jose Padial
- Marcus Hammond
- Andrew Smith

[rock,jpadial,mmh13,acsmith]@stanford.edu

